קוואזי-איזומטריה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

בטופולוגיה של מרחבים מטריים, קוואזי-איזומטריה היא פונקציה f:XY ממרחב מטרי X למשנהו Y, השומרת על המבנה המטרי באופן רופף, במובן הבא:

  1. קיימים קבועים λ,C כך שלכל x,xX מתקיים dY(f(x),f(x))<λdX(x,x)+C ו-dX(x,x)<λdY(f(x),f(x))+C; ובנוסף לזה,
  2. לכל yY קיימת נקודה xX כך ש- dY(f(x),y)<C.

משמעות התנאי הראשון היא שלפונקציה מותר לשנות את המרחק בין נקודות, אבל במידה מתונה בלבד; בפרט, אם המרחק בין נקודות גדל לאינסוף, כך גם המרחק בין התמונות שלהן. התנאי השני מכריח את הפונקציה לכסות חלק משמעותי מן המרחב השני: כל נקודה ב-Y נמצאת במרחק C לכל היותר מנקודה שהגיעה מ-X.

מרחבים שיש ביניהם קוואזי-איזומטריה הם מרחבים קוואזי-איזומטריים. זהו יחס שקילות: הרכבה של קוואזי-איזומטריות היא קוואזי-איזומטריה, ולכל קוואזי-איזומטריה מ-X ל-Y יש קוואזי-איזומטריה בכיוון ההפוך, מ-Y ל-X. מרחבים איזומטריים הם בפרט קוואזי-איזומטריים.

קוואזי-איזומטריה מודדת את המבנה של המרחב בקנה מידה גדול בלבד. למשל, כל מרחב קוואזי-איזומטרי למרחב המתקבל כשמוציאים ממנו כדור (גדול ככל שיהיה). בפרט, כל המרחבים החסומים קוואזי-איזומטריים זה לזה.

קוואזי-איזומטריה של חבורות

לכל חבורה, ובפרט כאלה שהן אינסופיות אבל נוצרות סופית, אפשר להתאים את גרף קיילי שלה ביחס לקבוצת יוצרים (סופית) נתונה; גרף כזה אפשר להפוך באופן טבעי למרחב גאודזי. שינוי של קבוצת היוצרים משנה את הגרף, אבל כל הגרפים המתקבלים באופן כזה עבור חבורה נתונה הם קוואזי-איזומטריים זה לזה. אפילו גרפי קיילי של כל שתי חבורות בעלות מידה משותפת הם קוואזי-איזומטריים זה לזה. אמנם, גם לחבורות שאינן בעלות מידה משותפת יכולים להיות גרפי קיילי קוואזי-איזומטריים, ובכל זאת, מבנה הגרף - עד כדי קוואזי-איזומטריה - מלמד רבות על החבורה. אם G ו-H נוצרות סופית ויש להן גרפי קיילי קוואזי-איזומטריים, ואם G היא סופית, בעלת הצגה סופית, דמוי-אבלית, דמוי-נילפוטנטית, דמוי-חופשית, אמנבילית או היפרבולית, אז H מקיימת את אותה תכונה[1]. מאידך, יש דוגמאות לחבורה פתירה נוצרת סופית, וחבורה שאינה דמוי-פתירה, עם גרפי קיילי קוואזי-איזומטריים. גם תכונת T של קשדן אינה נשמרת תחת קוואזי-איזומטריה של החבורות.

ראו גם

הערות שוליים

  1. ^ Survey on geometric group theory, Wolfgang Luck, 2008.