משפט רול

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
המחשה של המשפט: הקו הירוק, שהוא המשיק לגרף הפונקציה בנקודה c, מקביל לקו האדום המחבר את הקטע [a,b] ולציר ה-x.

משפט רול (על שם המתמטיקאי הצרפתי מישל רול שניסח אותו ב-1691), הוא משפט בסיסי בחשבון אינפיניטסימלי, העוסק בתכונה של פונקציות רציפות וגזירות בקטע סגור. המשפט אומר כי אם פונקציה רציפה בקטע סגור [a,b], גזירה בקטע הפתוח (a,b) וערכיה בשני קצוות הקטע זהים, כלומר f(a)=f(b), אז קיימת נקודה c בקטע (a,b) כך ש-f(c)=0, כלומר המשיק לגרף הפונקציה בנקודה זו הוא קו מאוזן ושיפועו שווה ל-0.

מבחינה לא פורמלית ניתן לתאר את המשפט כך: אם מצוירת פונקציה בין שתי נקודות באותו גובה (אותו ערך של y) בלי שהעיפרון מורם מהדף ובלי היווצרות 'שפיצים', תהיה לפחות נקודה אחת שבה העיפרון נע בדיוק במקביל לציר ה-x, ולא בשיפוע זוויתי כלשהו.

המשפט

תהי f פונקציה רציפה בקטע הסגור [a,b] וגזירה בקטע הפתוח (a,b). אם מתקיים f(a)=f(b), אז קיימת נקודה c(a,b) כך שמתקיים f(c)=0.

הוכחה

על פי משפט ויירשטראס השני, פונקציה רציפה בקטע סגור מקבלת בו מינימום ומקסימום. אם גם המינימום וגם המקסימום מתקבלים בקצוות (אשר, לפי הנתון, שווים בערכם) הרי שהפונקציה קבועה בקטע [a,b], והנגזרת שלה היא אפס בכל נקודה בקטע (a,b). אחרת, המקסימום או המינימום מתקבלים בתוך הקטע ובכל אחד מהמקרים קיימת נקודת קיצון x0 בקטע (a,b). לפי תנאי המשפט, הפונקציה גזירה ב-(a,b) ובפרט היא גזירה ב-x0, ולכן על פי משפט פרמה ערך הנגזרת ב-x0 הוא אפס כנדרש.

הכללות

אף שהמשפט נדמה כמעט טריוויאלי, קיימות לו שתי הכללות שימושיות מאוד: משפט הערך הממוצע של לגראנז' ומשפט הערך הממוצע של קושי.

קישורים חיצוניים