משפט ג'ייקובסון-מורוזוב

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש
ערך ללא מקורות
בערך זה אין מקורות ביבליוגרפיים כלל, לא ברור על מה מסתמך הכתוב וייתכן שמדובר במחקר מקורי.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
ערך ללא מקורות
בערך זה אין מקורות ביבליוגרפיים כלל, לא ברור על מה מסתמך הכתוב וייתכן שמדובר במחקר מקורי.
אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.
אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

במתמטיקה, משפט ג'ייקובסון – מורוזוב הוא הטענה שניתן למצוא לכל איבר נילפוטנטי באלגברת לי פשוטה למחצה שני איבר נוספים באלגברה כך שהם יוצרים את האלגברה 𝔰𝔩2. במילים אחרות, ניתן לשכן את 𝔰𝔩2 בכל אלגברת לי פשוטה למחצה. המשפט נקרא על שם ולדימיר מורוזוב וניית'ן ג'ייקובסון. מורוזוב הוכיח את המשפט עבור המרוכבים כשדה בסיס בשנת 1942, וג'ייקובסון הכליל את המשפט עבור שדה בסיס עם מאפיין "מספיק נחמד" שונה מ-2 בשנת 1951.

נוסח המשפט

בשביל לנסח את המשפט, נציג כמה הגדרות לשם נוחות. 𝔰𝔩2-שלשה באלגברת לי פשוטה למחצה 𝔤 (לאורך כל הדף הזה, שדה הבסיס הוא ממאפיין אפס) הוא הומומורפיזם של אלגברות לי 𝔰𝔩2𝔤 . באופן שקול, זו שלשה של איברים e,f,h ב-𝔤 כך שהיחסים הבאים מתקיימים:

[h,e]=2e,[h,f]=2f,[e,f]=h.

איבר x𝔤 נקרא נילפוטנטי אם האנדומורפיזם [x,]:𝔤𝔤 (הידוע בשם העתקת הצמוד, באנגלית: Adjoint Endomorphism ) הוא אנדומורפיזם נילפוטנטי, כלומר המטריצה המייצגת של ההעתקה היא מטריצה נילפוטנטית . עובדה: לכל 𝔰𝔩2 - שלשה (e,f,h), e חייב להיות נילפוטנטי. משפט ג'ייקובסון – מורוזוב מוכיח גם את הכיוון ההפוך: כל איבר נילפוטנטי e𝔤 שונה מאפס ניתן להרחיב ל-𝔰𝔩2-שלשה. עבור 𝔤=𝔰𝔩n, ה-𝔰𝔩2-שלשות נמצאו מפורשות על ידי נייל קריס ו-ויקטור גינצבורג במאמרם משנת 1997.