זהויות מופן

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

באלגברה וגאומטריה פרויקטיבית, זהויות מופן הן זהויות שיכול לקיים חוג לא אסוציאטיבי: הזהות השמאלית (x(zx))y=x(z(xy)), והזהות הימנית y((xz)x)=((yx)z)x. זהויות אלו מופיעות באופן טבעי כשחוקרים את הפרמטריזציה של מישור פרויקטיבי, והן קרובות לזהויות שמקיימת אלגברה אלטרנטיבית. גם לזהות המרכזית (xy)(zx)=(x(yz))x יש תפקיד מסוים. הזהויות קרויות על שם רות מופן (Moufang) (אנ').

את הזהות הימנית והשמאלית אפשר לנסח כטענות על אופרטורי הכפל מימין ומשמאל, כזהויות rxrzrx=r(xz)x ו-xzx=x(zx), בהתאמה. ניסוח זה חושף קשר לאלגברות ז'ורדן, שבהן משחק האופרטור Qx(y)=xyx תפקיד חשוב.

שלוש זהויות מופן מתקיימות בכל אלגברה אלטרנטיבית. מאידך, אלגברה עם יחידה המקיימת את הזהות הימנית והשמאלית היא אלטרנטיבית; ואלגברה עם חילוק[1] המקיימת את זהות מופן הימנית או השמאלית היא אלטרנטיבית.

באלגברה עם יחידה המקיימת את זהות מופן הימנית או השמאלית מתקיימת הזהות (a,b,a)4=0, כאשר (a,b,c) הוא האסוציאטור.

מקורות

  • The Role of Nonassociative Algebra in Projective Geometry, John R Faulkner, 2014.

הערות שוליים

  1. ^ כלומר, אלגברה עם יחידה שבה כל אופרטורי הכפל מימין ומשמאל הפיכים.