פורטל:מתמטיקה/תמונה נבחרת/42

גרסה מ־21:37, 4 ביולי 2021 מאת imported>העיתונאי המנטר (העיתונאי המנטר העביר את הדף פורטל:מתמטיקה/תמונה נבחרת/70 לשם פורטל:מתמטיקה/תמונה נבחרת/42 בלי להשאיר הפניה)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

ההכללה למשפט פיתגורס מוזכרת כבר ב"יסודות" של אוקלידס‏‏; אם על צלעותיו של משולש ישר-זווית מונחות צורות דומות, סכום השטחים שעל שני הניצבים שווה לשטח הצורה שעל היתר. בצורה פורמלית יותר: אם על צלעות משולש ישר-זווית שאורכי צלעותיו הם a,b,c בונים צורות ששטחיהן A,B,C כך ש Aa2=Bb2=Cc2, אזי A+B=C.

הכללה למשפט פיתגורס