קובץ:InfiniteSquareWellAnimation.gif
מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט
קפיצה לחיפוש
InfiniteSquareWellAnimation.gif (300 × 280 פיקסלים, גודל הקובץ: 1,006 ק"ב, סוג MIME: image/gif, בלולאה, 139 תמונות, 14 שניות)
![]() |
זהו קובץ שמקורו במיזם ויקישיתוף. תיאורו בדף תיאור הקובץ המקורי (בעברית) מוצג למטה. |
תקציר
תיאורInfiniteSquareWellAnimation.gif |
English: Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wavefunction solutions to the Time-Dependent Schrodinger Equation are shown for the same geometry and potential. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the wavefunction. (B,C,D) are stationary states (energy eigenstates), which come from solutions to the Time-Independent Schrodinger Equation. (E,F) are non-stationary states, solutions to the Time-Dependent but not Time-Independent Schrodinger Equation. Both (E) and (F) are randomly-generated superpositions of the four lowest-energy eigenstates, (B-D) plus a fourth not shown. |
תאריך יצירה | |
מקור | נוצר על־ידי מעלה היצירה |
יוצר | Sbyrnes321 |
(*Source code written in Mathematica 6.0 by Steve Byrnes, Apr. 2011. This source code is public domain.*) (*Shows classical and quantum trajectory animations for an infinite-square-well potential. Assumes L=hbar=1, m=2*pi^(-2), so that the nth energy eigenstate has energy n^2.*) ClearAll["Global`*"] (***Wavefunctions of the energy eigenstates***) psi[n_, x_] := Sin[n*Pi*x]*2^(1/2); energy[n_] := n^2; psit[n_, x_, t_] := psi[n, x] Exp[-I*energy[n]*t]; (***A random time-dependent state***) SeedRandom[1]; CoefList = Table[Random[]*Exp[2*Pi*I*Random[]], {n, 1, 4}]; CoefList = CoefList/Norm[CoefList]; Randpsi[x_, t_] := Sum[CoefList[[n]]*psit[n, x, t], {n, 1, 4}]; (***Another random time-dependent state***) SeedRandom[2]; CoefList2 = Table[Random[]*Exp[2*Pi*I*Random[]], {n, 1, 3}]; CoefList2 = CoefList2/Norm[CoefList2]; Randpsi2[x_, t_] := Sum[CoefList2[[n]]*psit[n, x, t], {n, 1, 3}]; (***Set default style for plots***) SetOptions[Plot, {PlotRange -> {{-.05, 1.05}, {-2.5, 2.5}}, Ticks -> None, PlotStyle -> {Directive[Thick, Blue], Directive[Thick, Pink]}, Axes -> {True, False}}]; SetOptions[ListPlot, {PlotRange -> {{-.05, 1.05}, {-2.5, 2.5}}, Axes -> False}]; (***Draw walls***) walls = ListPlot[{{{0, -2.5}, {0, 2.5}}, {{1, -2.5}, {1, 2.5}}}, Joined -> True, PlotStyle -> {{Thick, Black}, {Thick, Black}}]; (***Make the classical plot...a red ball bounces back and forth.***) classicaltrajectory[t_, left_, right_] := 2*(right - left)*Abs[t - Round[t]] + left; classicalball[t_, left_, right_] := ListPlot[{{classicaltrajectory[t, left, right], 0}}, PlotStyle -> Directive[Red, AbsolutePointSize[15]]]; classical[t_, label_] := Show[walls, classicalball[t, .1, .9], PlotLabel -> label]; (***Make the quantum plots***) plotpsi[n_, t_, label_] := Show[walls, Plot[{Re[psit[n, x, t]], Im[psit[n, x, t]]}, {x, 0, 1}], PlotLabel -> label, Axes -> {True, False}, Ticks -> None]; plotrand[t_, label_] := Show[walls, Plot[{Re[Randpsi[x, t]], Im[Randpsi[x, t]]}, {x, 0, 1}], PlotLabel -> label, Axes -> {True, False}, Ticks -> None]; plotrand2[t_, label_] := Show[walls, Plot[{Re[Randpsi2[x, t]], Im[Randpsi2[x, t]]}, {x, 0, 1}], PlotLabel -> label, Axes -> {True, False}, Ticks -> None]; (***Put all the plots together***) MakeFrame[t_] := GraphicsGrid[ {{classical[3 t/(4 Pi), "A"], plotpsi[1, t, "B"]}, {plotpsi[2, t, "C"], plotpsi[3, t, "D"]}, {plotrand[t, "E"], plotrand2[t, "F"]}}, Frame -> All, ImageSize -> 300]; output = Table[MakeFrame[t], {t, 0, 4 Pi*138/139, 4 Pi/139}]; SetDirectory["C:\\Users\\Steve\\Desktop"] Export["test.gif", output, "DisplayDurations" -> 10]
רישיון
אני, בעל זכויות היוצרים על עבודה זו, מפרסם בזאת את העבודה תחת הרישיון הבא:
![]() ![]() |
הקובץ הזה זמין לפי תנאי ההקדשה עולמית לנחלת הכלל CC0 1.0 של קריאייטיב קומונז. |
האדם ששייך יצירה להיתר הזה הקדיש את היצירה לנחלת הכלל על־ידי ויתור על כל הזכויות שלו או שלה על היצירה בכל העולם לפי חוק זכויות יוצרים, לרבות כל הזכויות הקשורות או הסמוכות כקבוע בחוק. באפשרותך להעתיק, לשנות, להפיץ, או להציג את היצירה, אפילו למטרות מסחריות, וכל זה אפילו מבלי לבקש רשות.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
כיתובים
נא להוסיף משפט שמסביר מה הקובץ מייצג
פריטים שמוצגים בקובץ הזה
מוצג
ערך כלשהו ללא פריט ויקינתונים
26 באפריל 2011
היסטוריית הקובץ
ניתן ללחוץ על תאריך/שעה כדי לראות את הקובץ כפי שנראה באותו זמן.
תאריך/שעה | תמונה ממוזערת | ממדים | משתמש | הערה | |
---|---|---|---|---|---|
נוכחית | 06:39, 27 באפריל 2011 | ![]() | 280 × 300 (1,006 ק"ב) | wikimediacommons>Sbyrnes321 | {{Information |Description ={{en|1=Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wav |
שימוש בקובץ
הדף הבא משתמש בקובץ הזה: